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Abstract
The stabiliser fragment of quantum theory is a foundational building block for quantum error
correction and the fault-tolerant compilation of quantum programs. In this article, we develop
a sound, universal and complete denotational semantics for stabiliser operations which include
measurement and classical control and in which quantum error-correcting codes are first-class objects.
The operations are interpreted as certain affine relations, offering a significantly simpler alternative
to the standard operator-algebraic semantics of quantum programs.

We demonstrate the power of the resulting semantics by describing a small, proof-of-concept
assembly language for stabiliser programs with fully-abstract denotational semantics.
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1 Introduction

The problem of compiling quantum algorithms into fault-tolerant hardware-level instructions
is a central challenge in the design of scalable quantum systems [9, 3, 30]. To this end,
quantum error-correcting codes play a central role, where stabiliser codes are the most
common and well-studied quantum error correction codes [21]. For fault-tolerant compilation
to scale, we need a better understanding of the compositional structure of fault-tolerance, and
therefore of the stabiliser fragment. Unlike general quantum programs, stabiliser quantum
programs can be simulated efficiently on a probabilistic classical computer [2]. Despite
this fact, the formal denotational semantics of stabiliser quantum programs has not been
thoroughly studied.

In this article, we develop a nondeterministic denotational semantics for quantum programs
built from stabiliser operations, including Clifford operators, Pauli errors, Pauli measurement
and classically-controlled Pauli operators. Our finely tuned denotation semantics for stabilizer
quantum programs is to be contrasted with the usual, much larger denotational semantics of
non-stabilizer quantum programs in terms of quantum channels. Our work draws from two
lines of research: the categorical semantics of quantum programming languages and quantum
computing [39, 38, 37, 26]; and the symplectic representation of pure stabiliser circuits
[23, 29, 25, 14, 6]. Ultimately, these results constitue the first step towards the development
of formally verified fault-tolerant quantum compilation frameworks, integrating current
approaches to compilation [16, 15, 24, 32] and verification [35, 11, 27, 43, 41, 18, 31, 34].
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2 Denotational semantics for stabiliser quantum programs

The categorical semantics of quantum theory builds on the mathematical semantics
of finite-dimensional quantum processes with measurement and classical control. These
semantics can be formally stated in the language of operator algebras [7], and are built in
three stages of increasing expressivity:

1. Pure quantum mechanics via finite-dimensional Hilbert spaces;
2. Mixed quantum mechanics via completely-positive maps between matrix algebras;
3. Quantum measurements and classical control via completely-positive maps between finite-

dimensional C∗-algebras.

These increasing stages of expressivity can be restated by applying the following functorial
constructions to the †-compact-closed category, FHilb, of finite-dimensional Hilbert spaces
and linear maps:

pure QM mixed QM QM w/ measurementsCPM construction [37] Splitting †-idempotents [38]

Finite-dimensional quantum mechanics can therefore be understood in purely categorical
terms, agnostic to the theory of operator algebras. This point of view is highly amenable
to generalisation and specialisation: simply replace FHilb with any other †-compact-closed
category, and apply these constructions to add abstract notions of mixing and measurement.

In this article, we work with †-compact-closed categories specifically tailored to the
stabiliser fragment. The first semantics is obtained directly by restricting FHilb to the
stabiliser fragment; whereas, the second semantics is given by the symplectic representation
of stabiliser maps. Specifically, we work throughout with odd-prime-dimensional quantum
systems, which ensures that the symplectic representation is well-behaved. Whilst the full
symplectic semantics breaks down in even characteristic, we can nevertheless recover the
theory of CSS codes in the qubit case [8, 40, 13, 28].
Outline. Section 2 begins with a review of the stabiliser formalism and its symplectic
formulation. We then describe novel denotational semantics for mixing in section 3 and
measurement in section 4. In each section, we develop the standard operator-theoretic
semantics given by restriction, and the corresponding symplectic representation, proving
their equivalence:

pure stabiliser theory affine Lagrangian relations

mixed stabiliser theory affine coisotropic relations

stabiliser theory
with measurements

affine relations
with symplectic types

[29, Chapter 9],[14],(Section 2)

Section 3

Section 4

CPM construction CPM construction

Splitting †-idempotents Splitting †-idempotents

Finally, in section 5, we define a simple imperative language for stabiliser quantum programs,
including Pauli measurement and classically-controlled Pauli operators, equipped with a fully
abstract denotational semantics derived from section 4.
Contributions. We present several novel contributions:

Corollary 25: a symplectic, relational semantics for completely positive stabiliser maps;
Theorem 42: we model stabiliser quantum measurements and classical control as affine
relations augmented with a modality to represent quantum data;
Propositions 28,43: we prove that the physically-realisable stabiliser programs, i.e. stabil-
iser quantum channels, are represented by the total relations;
Theorem 51: we interpret a toy programming language in this relational semantics, and
prove full abstraction.
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We do not merely apply the CPM construction and split †-idempotents to obtain our
denotational semantics. We construct finely-tuned, yet equivalent, categories of relations
which offer a significantly simpler alternative to the standard operator-theoretic semantics,
whilst supporting concrete computational tools, unlike the naïve categorical semantics.
Notation. Throughout, p denotes an odd prime, so that Fp := Z/pZ is the field of integers
modulo p. Let FHilb denote the category of finite-dimensional Hilbert spaces and linear maps.
The inner product is denoted by ⟨−|=⟩, the outer product by |−⟩⟨=|, vectors by |φ⟩, and
their Hermitian adjoints by ⟨φ| := |φ⟩†. Denote the internal hom of linear endomorphisms
on a finite-dimensional Hilbert space H by B(H) ∼= H∗ ⊗ H.

We assume familiarity with †-symmetric monoidal categories (†-SMCs), †-compact-closed
categories (†-CCCs), as well as a basic understanding of their string diagrams. See Selinger’s
survey article for reference [36]. Given a monoidal category C with an endomorphism group
of scalars, let Proj(C) be the quotient of C by invertible scalars.

2 Preliminaries: the stabiliser theory

We review the elements of the stabiliser theory, and its representation with symplectic linear
algebra. Explicitly, we define two †-CCCs for the pure stabiliser theory:

1. a concrete †-CCC, Stabp, given by restricting FHilb;
2. an abstract †-CCC, AffLagRelFp , described in terms of symplectic linear algebra.

These two †-CCCss are known to be equivalent up to nonzero scalars [29, 14]. We will take
AffLagRelFp to serve as the basis from which we build our abstract denotational semantics.

2.1 The Hilbert space picture
Consider the p-dimensional complex vector space Hp := Cp, equipped with the canonical
orthonormal basis {|x⟩ | x ∈ Fp}. Hp models the state of a quantum system called a qupit.

▶ Definition 1. Let χ(x) := exp(i2πx/p), then the Pauli operators on Hp are generated
by Z |x⟩ := χ(x) |x⟩ and X |x⟩ := |x+ 1⟩ and assemble into the qupit Pauli group:

Pp := {χ(y)XxZz | x, y, z ∈ Fp}.

The n-qupit Pauli group is defined to be the n-fold tensor product P⊗n
p , so that an arbitrary

Pauli operator takes the form χ(y)
⊗n

j=1 X
xj

j Z
zj

j for some vectors x, z ∈ Fn
p and y ∈ Fp.

▶ Definition 2. The Clifford group is the unitary normaliser of P⊗n
p :

Cℓn
p := {U ∈ U(H⊗n

p ) | ∀P ∈ P⊗n
p , UPU† ∈ P⊗n

p }.

▶ Lemma 3. Take a maximal Abelian subgroup S ⊆ P⊗n
p such that χ(x)1⊗n

Hp
∈ S if and only

if x = 0. Then S determines a normalised quantum state up to a global phase exp(2πiθ) where
θ ∈ [0, 1), as the unique state |S⟩ ∈ H⊗n

p such that s |S⟩ = |S⟩ for all s ∈ S. The equivalence
class [exp(2πiθ) |S⟩]θ∈[0,1) is called the stabiliser state associated to the stabiliser group
S.

Consider a stabiliser group S ⊆ P⊗n
p , then for any C ∈ Cℓn

p and s ∈ S, we have that
CsC† · C |S⟩ = Cs |S⟩ = C |S⟩. It follows that the stabiliser group CSC† = {CsC† | s ∈ S}
stabilises the state

∣∣CSC†〉
= C |S⟩. Clifford unitaries therefore map stabiliser states to

stabiliser states, and we assemble these operations into a †-CCC:
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▶ Definition 4. The †-CCC Stabp of qupit stabiliser maps is the †-compact-closed
subcategory of FHilb generated by the qupit stabiliser states and Clifford operators as well as
the scalars 1/√p and √

p under tensor product, composition and the Hermitian adjoint.

2.2 The symplectic picture
We recall how the (pure) qupit stabiliser theory can be restated in purely symplectic terms by
taking the notion of a stabiliser group, and their symplectic representation, as fundamental.
The following notion will serve as the objects in the “symplectic” category AffLagRelFp

:

▶ Definition 5. A symplectic vector space (V, ωV ) is a (finite-dimensional) Fp-vector
space V equipped with a non-degenerate, alternating, bilinear form ωV : V ⊕ V → Fp.

One can always choose the following concrete symplectic form:

▶ Example 6 (Standard symplectic form). Given any n ∈ N, (Fn
p ⊕ Fn

p , ωn) is a symplectic
vector space where ωn

(
(x, z), (a,b)

)
:= x · b − z · a.

The Pauli group P⊗n
p is a central extension of the Abelian group Fn

p ⊕ Fn
p by Fp [25,

§ 6.2.3]. This means that there is a function which parametrises Pauli operators

π : Fp ⊕ Fn
p ⊕ Fn

p −→ P⊗n
p : (y,x, z) 7−→ χ(y)χ(2−1x · z)

n⊗
k=1

Xxk

k Zzk

k , (1)

chosen such that π(y,x, z)π(c,a,b) = π(y + c + 2−1x · a,x + a, z + b). This allows us to
work with Pauli operators purely in terms of symplectic data; for example:

▶ Lemma 7. Two Paulis π(y,x, z) and π(c, a,b) commute if and only if ωn((x, z), (a,b)) = 0.

Recall that the commutation of Paulis was needed to define stabiliser groups. Therefore,
the representation π allows us to define stabiliser groups purely at the symplectic level:

▶ Definition 8. Given a linear subspace S of a symplectic vector space (X,ω), its symplectic
complement is Sω := {x ∈ X | ∀s ∈ S, ωn(x, s) = 0}. The subspace S is:

isotropic if S ⊆ Sω;
coisotropic if Sω ⊆ S;
Lagrangian if it is maximally isotropic, i.e. S = Sω.

An affine subspace is isotropic / coisotropic / Lagrangian if its linear part1 is. By convention,
empty subspaces are affine Lagrangian.

The isotropic condition on a subspace is equivalent to the commutation of the corresponding
Pauli operators. The additional Lagrangian condition imposes that these subgroups must be
maximal. The affine component accounts for the phase factor χ(a).

▶ Proposition 9 ([23]). The mapping (1) lifts to a bijection between the set of non-empty
affine Lagrangian subspaces of (Fn

p ⊕ Fn
p , ωn) and the set of stabiliser subgroups of P⊗n

p (i.e.,
the set of stabiliser states of n qupits up to a phase χ(a).).

Symplectic vector spaces admit a notion of basis compatible with the symplectic form:

1 The linear part of an affine subspace A ⊆ Fn
p is the subspace of Fn

p given by {x − y | x, y ∈ A}.
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▶ Proposition 10. Every symplectic vector space (X,ω) admits a basis of the form
{ej , fj | 1 ⩾ j ⩾ n} for some n ∈ N and for which, for any j, k,

ω(ej , ek) = 0, ω(fj , fk) = 0 and ω(ej , fk) =
{

1 if j = k;
0 otherwise.

(2)

Such a basis is called a symplectic basis. Furthermore, if S is an isotropic subspace of X,
every basis of S extends to a symplectic basis of X via a symplectic Gram-Schmidt process.

A symplectic basis for X is equivalent to a structure-preserving isomorphism X ∼= Fn
p ⊕Fn

p :

▶ Definition 11. A symplectomorphism φ : (X,ωX) → (Y, ωY ) is a linear isomorphism
such that for all x,y ∈ X, ωY (φ(x), φ(y)) = ωX(x,y). An affine symplectomorphism is
an affine map X → Y whose linear part2 is a symplectomorphism.

All symplectic vector spaces (X,ωX) are even-dimensional and symplectomorphic to a
standard symplectic vector space (Fn

p ⊕ Fn
p , ωn) for n := dim(X)/2. In particular:

▶ Proposition 12. There is an isomorphism between the Clifford group Cℓn
p , modulo global

phase, and the group of affine symplectomorphisms on (Fn
p ⊕ Fn

p , ωn).

Affine Lagrangian relations

Affine Lagrangian subspaces are the fundamental notion in the symplectic representation:

1. the graph of an affine symplectomorphism φ : (X,ωX) → (Y, ωY ) is an affine Lagrangian
subspace Gr(φ) := {(x, φ(x)) | x ∈ X ⊆ X ⊕ Y } ⊆ (X ⊕ Y,−ωX ⊕ ωY );

2. the composition of affine symplectomorphisms, and thus Clifford operators, is compatible
with the relational composition of their graphs Gr(φ); Gr(ψ) = Gr(ψ ◦ φ);

3. the action of Clifford operators on stabiliser states is compatible with the relational
composition of their corresponding affine Lagrangian subspaces.

In other words, following Weinstein [42], we adopt the motto:
Everything is an affine Lagrangian relation!

▶ Definition 13. The category AffLagRelFp
of affine Lagrangian relations has:

objects: symplectic vector spaces (V, ωV );
morphisms (V, ωV ) → (W,ωW ): affine Lagrangian subspaces of (V ⊕W,−ωV ⊕ ωW );
monoidal product: given by the direct sum (V ⊕W,ωV ⊕ ωW );
monoidal unit: given by the trivial symplectic vector space I := (F0

p, 1) ∼= (F0
p ⊕ F0

p, ω0);
dagger: given by the relational converse, (x,y) ∈ L† if and only if (y,x) ∈ L;
†-compact structure: given by cups η(V,ωV ) := {(0, (x,x))} : I → (V, ωV )∗ ⊕ (V, ωV ),
where (V, ωV )∗ := (V,−ωV ).

▶ Theorem 14 ([14, 29]). There is an essentially surjective and full †-compact-closed functor
Rel : Stabp → AffLagRelFp This restricts to a †-compact-closed equivalence when quotienting
by invertible scalars: Proj(Stabp) ≃ AffLagRelFp

.

For convenience, denote AffLagRelFp
(n,m) := AffLagRelFp

((Fn
p ⊕ Fn

p , ωn), (Fm
p ⊕ Fm

p , ωm)),
which via theorem 14 and equation (1) are the concrete affine Lagrangian relations representing

2 φ is affine if there is a linear map ℓ such that φ(x) − φ(0) = ℓ(x). ℓ is called the linear part of φ.
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stabiliser maps H⊗n
p → H⊗m

p . These concrete relations represent the basic operations of the
stabiliser theory. However, the full stabiliser quantum theory is much richer than what we
have described. For example, stabiliser codes are fundamental in quantum error correction,
but they are not described by pure states. Similarly, the measurement and classical control
of stabiliser circuits, which we have not yet discussed, are essential for error correction.

3 Stabiliser codes and mixed states

The stabiliser theory presented in Section 2 is, from the perspective of quantum computation,
fundamentally limited: it is efficiently simulatable on a classical computer [20, 2]. Nevertheless,
the algebraic structure of the theory—specifically, the concept of stabiliser subgroups—
provides the foundation for quantum error correction (QEC). QEC leverages these elements
to encode and manipulate information in a way that supports universal quantum computation,
while retaining structural features which permit fault tolerance.

A stabiliser code is a non-maximal stabiliser group, i.e. an Abelian subgroup S of P⊗n
p

such that χ(x) · 1 ∈ S if and only if x = 0. Whereas a maximal stabiliser group uniquely
determines a pure stabiliser state |S⟩—a one-dimensional subspace of the Hilbert space
H⊗n

p —a stabiliser code determines a higher-dimensional subspace, the codespace:

HS := {|φ⟩ ∈ H⊗n
p | s |φ⟩ = |φ⟩ for all s ∈ S} ⊆ H⊗n

p (3)

Elements of the stabiliser group impose linear constraints on the codespace. Relaxing the
number of constraints therefore yields a larger subspace, while still enforcing sufficient
symmetry to make it possible to detect Pauli errors.

Semantically, it is natural to view a stabiliser code not just as a subspace but as the
completely mixed state on that subspace. Concretely, let ΠS : H⊗n

p → H⊗n
p denote the

projection of H⊗n
p onto HS . The normalised map ρS := ΠS/Tr(ΠS) is the mixed state for

the uniform mixed state on HS . This interpretation allows stabiliser codes to be treated
within the framework of mixed-state quantum mechanics, and more importantly, to obtain
denotational semantics for stabiliser codes via categorical constructions of mixed state
quantum theory.

In this section, we introduce two semantics for mixed stabiliser quantum mechanics by:

1. restricting the mixed processes to those built out stabiliser maps;
2. generalising the symplectic representation to affine coisotropic relations.

Because the first semantics is given by restriction, it is hard to grapple with. On the other
hand, the second semantics is novel, and much more apt to reason about stabiliser codes.

3.1 Completely-positive maps between matrix algebras

Selinger’s CPM construction builds a category of mixed processes CPM(C) out of a †-CCC C
by adding a notion of discarding that respects the dagger structure [37]. This plays a similar
role to how the Kleisli categories SetP and MeasG, respectively over the power-set and Giry
monads, are categorical semantics for nondeterministic and probabilistic computations:

▶ Definition 15 ([37]). Given a †-CCC C, the †-CCC CPM(C) has:
objects: same as C.
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morphisms [f, S] : X → Y : are equivalence classes of pairs (f, S), where S is an object
of C and f : X ⊗ S → Y in C, modulo the equivalence relation

(f, S) ∼ (g, T ) ⇐⇒
f

f

Y

Y ∗

X
S

X∗

S∗

=
g

g

Y

Y ∗

X
T

X∗

T ∗

where Y ∗
f

X∗ := Y ∗
f†X∗

.

all other †-compact-closed structure: inherited from C.

There is a canonical “doubling” functor ι : C → CPM(C) which sends morphisms
f : X → Y to (uR

X ; f, I) : X → Y . This means that the CPM construction is adding a new
morphism that connects both halves of this doubling. For the example of C := FHilb, this is
interpreted as adding the (unnormalized) maximally mixed state:

▶ Theorem 16 ([37, Ex. 4.21]). CPM(FHilb) is equivalent to the CCC of completely-positive
(CP) maps between matrix algebras B(H), for all H ∈ FHilb.

▶ Corollary 17. There is a faithful †-compact functor CPM(Stabp)↣ CPM(FHilb).

The projection ΠS : H⊗n
p → H⊗n

p onto the codespace of a stabiliser code S is a state in
CPM(Stabp). Moreover, Clifford operators C in Cℓn

p → Stabp → CPM(Stabp) act on these
projectors by conjugation C†ΠSC = ΠC†SC as expected. In particular, for a stabilizer state
|S⟩, we have C† |S⟩⟨S|C =

∣∣C†SC
〉〈
C†SC

∣∣.
To restrict physical processes, we impose the additional normalisation constraint.

▶ Definition 18. Given any X ∈ C, let TrX denote the morphism X → I ∈ CPM(C) given
by the equivalence class X

X∗ . A morphism [f, S] : X → Y in CPM(C) is causal if and
only if TrY [f, S] = TrX . Denote the symmetric monoidal subcategory of causal morphisms in
CPM(C) by Caus(CPM(C)).

Concretely, the morphisms TrH in CPM(FHilb), are given by the linear-algebraic trace in
FHilb. In the language of operator algebras:

▶ Corollary 19. Caus(CPM(FHilb)) is equivalent to the SMC of completely-positive trace-
preserving (CPTP) maps between matrix algebras B(H) ∼= H∗ ⊗ H for all H ∈ FHilb.

In other words, these are CP maps which preserve the trace norm, in analogy to how Markov
processes preserve the L1 norm.

▶ Example 20. The normalisation ρS = ΠS/Tr(ΠS) of the projector ΠS onto the code
space of a stabiliser code S is completely positive and trace preserving; whereas without the
normalisation factor, the projector ΠS is only trace-preserving when Tr(ΠS) = 1.

3.2 Stabiliser codes as affine coisotropic relations
In this subsection, we apply the CPM construction to the †-CCC of affine Lagrangian
relations, obtaining a relational semantics for CPM(Stabp). In particular, we show that this
produces the poset-enriched †-CCC of affine coisotropic relations, relaxing the dimensionality
requirement for Lagrangian relations.

▶ Definition 21. The †-CCC AffCoisotRelFp
of affine coisotropic relations has the same

structure as AffLagRelFp
, where now the morphisms (V, ωV ) → (W,ωW ) are affine coisotropic

subspaces of (V ⊕W,−ωV ⊕ ωW ).
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It is well-understood that “phaseless” stabiliser codes are in bijection with isotropic
subspaces [23], and hence also with coisotropic subspaces via the symplectic complement.
However, once Pauli phases are introduced, this second bijection breaks down: phased
stabiliser codes correspond exactly to affine coisotropic subspaces but not to affine isotropic
subspaces. Thus, affine coisotropic relations are the correct algebraic setting for the stabiliser
theory with non-maximal stabiliser groups.

▶ Example 22. The total subspace can be regarded as an affine coisotropic relation:

Im(V,ωV ) := {(0,v) | ∀v ∈ V } : I → (V, ωV ) (4)

We use the name Im(V,ωV ) because postcomposition with an affine Lagrangian, or affine
coisotropic relation R : (V, ωv) → (W,ωW ) is identified with the set-theoretic image:

ImV ;R = {(0,w) | ∃v : (v,w) ∈ R} = F0
p ⊕ Im(R) ∼= Im(R) (5)

Adding the image as a generator to AffLagRelFp
yields AffCoisotRelFp

:

▶ Proposition 23. Every non-empty affine coisotropic subspace of Fn
p ⊕ Fn

p of dimension
n+m is the image of an affine Lagrangian coisometry Fm

p ⊕ Fm
p → Fn

p ⊕ Fn
p .

Proof. We prove the claim for linear Lagrangian coisometries and coisotropic linear subspaces,
after which the affine generalisation follows immediately.

Let S be such a coisotropic subspace so that Sω is isotropic. Consider a basis of Sω which
by proposition 10 extends to a symplectic basis of (V, ω). This yields a symplectomorphism
φ : (V, ω) → (Fn

p ⊕ Fn
p , ωn) that takes this symplectic basis of V to the standard basis, and

such that φ(Sω) = {(x,02n−k) | x ∈ Fk
p}. Note that the subspace D := {(x,0k) | x ∈ Fk

p} is
Lagrangian in (Fk

p ⊕Fk
p, ωk) so that φ(Sω) = D⊕{02(n−k)}. It follows that C := Gr(φ); (D⊕

12(n−k)) is precisely a Lagrangian relation for which kerC = CR({02(n−k)}) = Sω. Then, C
is a composition of isometries, and thus an isometry. Then S = (Sω)ω = (kerC)ω = im(CR),
i.e. S is the image of the Lagrangian coisometry CR. ◀

▶ Theorem 24. There is a †-compact isomorphism CPM(LagRelFp
) ∼= CoisotRelFp

sending:

[f, (S, ωS)] : (X,ωS) → (Y, ωY ) 7−→ (1(X,ωX ) ⊕ Im(S,ωS)); f : (X,ωS) → (Y, ωY )

Proof. We prove the proposition for Lagrangian and coisotropic linear relations, after which
the affine extension follows immediately.

This assignment is clearly functorial and identity-on-objects, and preserves the †-compact-
closed structure. Moreover, since both CPM(LagRelFp) and CoisotRelFp are compact-closed,
it suffices to prove that the states in both categories are in canonical bijection. We already
have surjectivity by proposition 23, so that all we need to prove is injectivity.

Given Lagrangian relations L : S → X and M : T → X such that Im(L) ̸= Im(M), then

x ∈ Im(L) if and only if
[
x
x

]
∈

L

L

X

X∗ =
{[

x
y

] ∣∣∣∣ ∃z : (z,x) ∈ L

(z,y) ∈ L

}
. (6)

But by assumption there is some x such that x ∈ Im(L) and x /∈ Im(M), and it is therefore
immediate that [L, (S, ωS)] ̸= [M, (T, ωT )]. ◀

▶ Corollary 25. There is a †-compact functor Rel : CPM(Stabp) → AffCoisotRelFp , which
restricts to an equivalence when quotienting by scalars AffCoisotRelFp

≃ Proj(CPM(Stabp)).
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Proof. This follows immediately from the equivalence AffCoisotRelFp
∼= CPM(AffLagRelFp) ≃

CPM(Proj(Stabp)) and observing that, in the case of Stabp, we obtain the same category if
we quotient by scalars before or after applying the CPM construction. ◀

To include mixed states and stabiliser codes in our semantics, we update our motto:
Everything is an affine coisotropic relation!

▶ Example 26. The following quantum channels are represented in Rel(CPM(Stabp)):
the maximally mixed state by Im(V,ωV );
the quantum trace by its relational converse Im†

(V,ωV );
the completely depolarising channel by Im†

(V,ωV ); Im(V,ωV );
the Z-flip channel by EX := {((z, x), (z′, x)) | x, z, z′ ∈ Fp}.

▶ Definition 27. A relation R : X → Y with converse R† is total when Im(R†) = X. Given
a category C of relations, let Total(C) denote the subcategory of total maps.

By restricting the mixed stabiliser theory to the trace-preserving maps (the physical
processes), the functor CPM(Stabp) → AffCoisotRelFp restricts to an equivalence on the nose,
without quotienting by scalars:

▶ Proposition 28. The functor Rel : CPM(Stabp) → AffCoisotRelFp
restricts to a symmet-

ric monoidal equivalence Caus(CPM(Stabp)) ≃ Total(AffCoisotRelFp
) making the following

diagram commute:

Total(AffCoisotRelFp) AffCoisotRelFp

Caus(CPM(Stabp)) CPM(Stabp) Proj(CPM(Stabp))

CPTP maps between
matrix algebras

CP maps between
matrix algebras Proj

(
CP maps between
matrix algebras

)
≃ ≃

Proof. It is immediate that Rel : Caus(CPM(Stabp)) → Total(AffCoisotRelFp
) is an es-

sentially surjective, full, monoidal functor, making the diagram commute. It remains
to prove faithfulness. Take two maps [f, S], [g, T ] : X → Y in CPM(Stab) such that
[g, T ] = λ · [f, S] some λ ̸= 0. Then TrY [g, T ] = λTrY [f, S] = λTrX . Therefore [g, T ]
is causal iff λ = 1 i.e. [g, T ] = [f, S], thus, each projective equivalence class of morph-
isms Caus(CPM(Stabp)) contains at most one representative. Therefore, the equivalence
AffCoisotRelFp

≃ Proj(CPM(Stabp)) uniquely lifts along Proj on causal maps. ◀

3.3 Codespace and the order on projectors
Each affine coisotropic subspace S ⊆ (F2n

p , ωn) induces an orthonormal projector ΠS : H⊗n
p →

H⊗n
p , such that Rel(ΠS) = S. In case S = ∅, then ΠS := 0. Otherwise, if S = L + a is

nonempty, then:

ΠS := 1
|Lωn |

∑
b∈Lωn

π
(
ωn(a,b),b

)
.

Given a non-empty affine coisotropic subspace S = L + a ⊆ (F2n
p , ωn), we think of

Lωn as the codespace associated to S, where ΠS is the orthogonal projector onto this
codespace. Because the Pauli group P⊗n

p is a nice unitary error basis for H⊗
p , we can

interpret Pauli operators as potential errors which can occur. Moreover, because global
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phases are quotiented together in mixed quantum theory, we can represent arbitrary Pauli
operators by elements e ∈ F2n

p as π(0, e). It is well understood that the fundamental theory
of stabilizer quantum error correction can be formulated in purely symplectic terms:

An error e ∈ F2n
p is Symplectic condition Projector condition

Trivial e ∈ Lωn ΠSπ(0, e)ΠS = ΠS

Detectable e /∈ L ΠSπ(0, e)ΠS = 0
Undetectable, nontrivial e ∈ L \ Lωn ΠSπ(0, e)ΠS ̸= 0, ΠSπ(0, e)ΠS ̸= ΠS

Moreover, a finite set E ⊆ F2n
p of errors is correctable if and only if:

∀e ̸= f ∈ E : f − e /∈ L ⇐⇒ ∀e ̸= f ∈ E : ΠSπ(0, f − e)ΠS = 0.

The code distance d(S) ∈ N of a nonempty affine coisotropic subspace S = L + a is
the minimal number of tensor factors on which a nontrivial undetectable Pauli acts. This is
most easily understood in the symplectic picture where:

d(S) := min
{ ∣∣{i ∈ {0, . . . , n− 1} : (ex,i, ez,i) ̸= (0, 0)}

∣∣ : ∀e = (ex, ez) ∈ L \ Lωn
}

The order on nonempty affine Lagrangian subspaces, and their corresponding projectors is
trivial. However, for affine coisotropic subspaces, it tells us when the corresponding projectors
are more or less pure than each other: there is an inclusion of affine coisotropic subspaces
R ⊆ S if and only if there is an inclusion of the images of their corresponding projectors
Im(ΠR) ⊆ Im(ΠS). In other words, when the constraints imposed by R can be relaxed to S.

▶ Example 29. For an extremal example, the empty affine coisotropic subspace ∅ ⊆ (F2n
p , ωn)

induces the projector from H⊗n
p onto the 0-dimensional subspace: C0 ⊆ H⊗n

p . On the other
extreme, the total affine coisotropic subspace F2n

p ⊆ (F2n
p , ωn) induces the trivial projector

from H⊗n
p onto itself. Therefore comparing these two subspaces in the symplectic picture

we have an Fp-affine subspace ∅ ⊆ F2n
p ; whereas in terms of projectors, we have a C-linear

subspace C0 ⊆ H⊗n
p . The empty and the total affine coisotropic subspaces are respectively

the bottom and top elements in the partial order on affine coisotropic subspaces, so that all
affine coisotropic subspaces are contained between them.

This order also allows us to quantify error correction properties. For example, given two
affine coisotropic subspaces R,S ⊆ (F2n

p , ωn): R ⊆ S if and only if d(S) ⊆ d(R), so that code
distance is anti-monotone with respect to this order.

Using the symplectic representation, we moreover have a quantitative notion to determine
when processes are more or less pure than each other:

▶ Theorem 30. By normalizing morphisms and then taking the order on projectors:

CPM(Stabp) is enriched in preordered sets;
Proj(CPM(Stabp)) is enriched in partially ordered sets;
Caus(CPM(Stabp)) is enriched in partially ordered sets.

Proof. Since AffCoisotRelFp
is compact closed, any morphism R : (V, ωV ) → (W,ωW ) ca-

nonically induces a state ⌊R⌋ : I → (V ⊕W,ωV ⊕ ωW ), called its name, which is analogous
to taking the Choi matrix of a mixed quantum process. Therefore, there is an inclusion of
affine coisotropic relations R ⊆ S if and only if there is an inclusion of the images of their
corresponding projectors Im(Π⌊R⌋) ⊆ Im(Π⌊S⌋).
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Because the operator normalized Choi-matrices of morphisms between any two Hil-
bert spaces in Caus(CPM(Stabp)) are distinct from each other, the isomorphism Rel :
Caus(CPM(Stabp)) ∼= Total(AffCoisotRelFp

) induces a partial order on the trace preserving
mixed stabiliser quantum processes.

On the other hand, when working in CPM(Stabp), two proportional, yet distinct morph-
isms of the same type induce the same projector, so the order fails to be anti-symmetric. ◀

4 Measurement and classical types

In the previous section, we saw how the CPM construction provides an abstract setting for:

1. general mixed state quantum mechanics when applied to FHilb;
2. more specifically, stabiliser codes when applied to AffLagRelFp

≃ Stabp.

As previously mentioned, stabiliser codes are used to detect and correct errors on faulty
quantum channels: encoding quantum information redundantly as a mixed state. However,
from, an operational point of view, to detect errors, one has to measure part of the code
space; and to correct errors, one must apply operations to the code space conditional on the
measurement outcomes.

Given an indexed orthonormal basis B = {|λ1⟩ , · · · , |λn⟩} for a finite-dimensional Hilbert
space H, the measurement in this basis is represented by the projector EB : B(H) → B(H)
which sends pure states to probabilistic mixtures of pure states according to the Born rule:

EB(|φ⟩⟨φ|) :=
n∑

j=1
|λj⟩⟨λj | |φ⟩⟨φ| |λj⟩⟨λj | =

n∑
j=1

|⟨λj |φ⟩|2 |λj⟩⟨λj | (7)

The indices of the basis are interpreted as the measurement outcomes occurring with probab-
ility |⟨λj |φ⟩|2. This projector EB is an endomorphism on H in CPM(FHilb). In particular, a
Pauli-X basis measurement is an endomorphism on Hp in CPM(Stabp). Therefore, in some
sense, EB is the “classical” subobject of the “quantum” object H which has been measured in
the basis B. By promoting these subobjects to objects, in the following subsection we obtain
a categorical semantics for quantum theory with classical and quantum types; reproducing
the usual setting for finite-dimensional quantum mechanics. Later, we perform an analogous
construction to stabiliser circuits to obtain a fully relational semantics.

4.1 Adding classical types by splitting dagger-idempotents
We review the †-idempotent completion of a †-CCC, recalling:

▶ Definition 31. A †-idempotent in a †-SMC is a map f such that f† = f and f ; f = f .

In the setting of finite-dimensional, mixed quantum theory:

▶ Example 32 ([26, Thm. 2.5], [12, Prop. 3.5]). The †-idempotents on H in CPM(FHilb)
are in bijection with C∗-subalgebras of the matrix algebra B(H) ∼= H∗ ⊗ H.

The identity on H is an idempotent and corresponds to the trivial C∗-subalgebra B(H) ⊆
B(H). On the other hand, projectors onto subspaces induced by measurement, such as
measurement onto a basis EB : B(H) → B(H) correspond to commutative C∗-subalgebras of
B(H). We promote these subobjects to objects:

▶ Definition 33 ([38, Def. 3.13]). Given a †-CCC C, the †-idempotent completion, Split†(C),
is the †-CCC with:
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objects: pairs (A, a) where A is an object of C and a : A → A is a †-idempotent;
morphisms: f : (A, a) → (B, b) are morphisms f : A → B in C such that a; f ; b = f ;
identities: 1(A,a) := a;
rest of †-compact structure given pointwise in C.

There is a canonical embedding C → Split†(C) sending objects A 7→ (A, 1A) and acting
as the identity on morphisms. When applied to CPM(FHilb), the †-idempotent completion
reproduces the standard setting for finite-dimensional quantum mechanics:

▶ Theorem 34 ([26, Thm. 2.5], [12, Prop. 3.5]). Split†(CPM(FHilb)) is equivalent to the
CCC of completely-positive maps between finite-dimensional C∗-algebras.

The objects of the form (H, 1H) represent the matrix algebras, interpreted as the purely
quantum systems in CPM(FHilb). On the other hand, the new objects added by †-idempotent
completion correspond to non-matrix C∗-algebras, interpreted as being more classical. For the
example of a quantum measurement induced by an orthonormal basis B, the object (H, EB)
is interpreted as a classical system measured according to the basis B. The canonical map
EB : (H, 1H) → (H, EB) is interpreted as the measurement induced by B; whereas the map
EB : (H, EB) → (H, 1H) is interpreted as the state preparation induced by B. Measurement
followed by state preparation yields the quantum system projected onto the measurement basis;
whereas, state preparation followed by measurement yields the identity on the classical system:

Measuring
then

preparing:

(H, 1H)

(H, EB) (H, 1H)
EB

EB

EB

Preparing
then

measuring:

(H, EB) (H, 1H)

(H, EB)

EB

EB

EB

Arbitrary completely-positive maps between C∗-algebras cannot be physically implemen-
ted. Just as in the previous section, we must impose an additional constraint:

▶ Definition 35. A morphism [f, S] : (X,x) → (Y, y) in Split†(CPM(C)) is causal if and
only if TrY [f, S] = TrX : (X,x) → (I, 1I). We denote Caus(Split†(CPM(C))) the symmetric
monoidal subcategory of causal morphisms in Split†(CPM(C)).

In the setting of finite-dimensional quantum theory; this reproduces the usual operator
algebraic setting for finite-dimensional quantum mechanics:

▶ Corollary 36. Caus(Split†(CPM(FHilb))) is equivalent to the symmetric monoidal category
of completely-positive trace-preserving (CPTP) maps between finite-dimensional C∗-algebras.

In other words, the morphisms in Caus(Split†(CPM(FHilb))) correspond to finite-dimensional
quantum channels, and the states correspond to density matrices. Importantly, the
state preparation and measurement maps are quantum channels.

4.2 The stabiliser theory with affine nondeterministic classical control
In the previous subsection, we recalled how the symmetric monoidal category
Caus(Split†(CPM(FHilb))) is equivalent to the standard setting for quantum channels. That
is to say, the finite-dimensional quantum circuits with measurement and classical control.
In this subsection, by applying the same constructions to CPM(Stabp)↣ CPM(FHilb); we
show that the canonical setting for stabilizer quantum mechanics with Pauli measurement
and Pauli state preparation admits a concise, entirely relational description. To this end:

▶ Definition 37. The †-compact-closed category AffRelFp
of affine relations has finite-

dimensional Fp-vector spaces as objects and affine subspaces as morphisms. Composition is
given by relational composition, whilst the identity and compact-closed structure are given by
the diagonal relation. The dagger is given by the relational converse.
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▶ Lemma 38. There is a faithful †-compact-closed functor Q : AffLagRelFp ↣ AffRelFp which
forgets symplectic structure.

Instead of forming Split†(AffCoisotRelFp
) on the nose, we can add additional affine relations

to the image of Q : AffCoisotRelFp
↣ AffRelFp

which †-split †-idempotents:

▶ Proposition 39. The †-idempotents in AffCoisotRelFp †-split through the forgetful functor
AffCoisotRelFp

↣ AffRelFp
. In particular, Pauli-X measurement splits through the relations:

µX :=
{([

x

z

]
, x

)
∈F2

p ⊕ Fp

}
:Q(F2

p, ω2)→Fp, ηX :=
{(

x,

[
x

z

])
∈Zp ⊕ F2

p

}
:Fp →Q(F2

p, ω2)

Proof. Consider the relation in AffCoisotRelFp
corresponding to the Z-flip channel:

EX := Rel(EX) =
{([

x

z

]
,

[
x

z′

])
∈ F2

p ⊕ F2
p

}
: (F2

p, ω2) → (F2
p, ω2)

Any †-idempotent in AffCoisotRelFp
is affine symplectomorphic to E ⊕n

X ⊕ 1(Fm
p ⊗Fm

p ,ωm) for
some n,m ∈ N. Moreover, Q(EX) = µX ; ηX splits as ηX ;µX = 1Fp

. ◀

The process of †-splitting †-idempotents through Q : AffCoisotRelFp
↣ AffRelFp

adds a
quantum modality Q to AffRelFp

; imposing compatibility with the symplectic structure:

▶ Definition 40. Let AffRelQFp
denote the †-CCC with:

Objects: Generated by finite direct sums of finite dimensional symplectic vector spaces
Q(V, ωV ) ∈ Q(AffCoisotRelFp

), and finite dimensional vector spaces W ∈ AffRelFp
;

Morphisms: Generated by Q(AffCoisotRelFp
) in addition to µX : Q(F2

p, ω2) → Fp and
νX : Fp → Q(F2

p, ω2) under the direct sum and relational composition;
†-compact structure: Given pointwise in Q(AffCoisotRelFp), AffRelFp , where µ†

X := νX .

By restricting to either class of objects, it is immediate that:

▶ Lemma 41. AffCoisotRelFp and AffRelFp are full †-compact closed subcategories of AffRelQFp
.

Moreover, because Q : AffCoisotRelFp ↣ AffRelFp is faithful, it is immediate that:

▶ Theorem 42. There is a †-compact closed equivalence Split†(AffCoisotRelFp
) ≃ AffRelQFp

.

In other words, this category is obtained by glueing together the †-CCCs AffLagRelFp

and AffRelFp
along the map µX which projects onto the X subspace and its transpose. We

interpret the symplectic objects Q(V, ωV ) as the quantum types; the objects W with no
symplectic structure as the classical types; µX as the measurement in the Pauli-X basis; and
νX as state preparation in the Pauli-X basis.

Finally, our moto becomes:

Everything is an affine relation, with quantum data captured by a symplectic modality!

which, admittedly, is not quite as catchy as the previous motos.
However, just as for Split†(CPM(FHilb)); the category Proj(Split†(CPM(Stabp)) ∼=

AffRelQFp
has morphisms which do not correspond to operations which can be physically

implemented. We restrict ourselves to the completely-positive maps:
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▶ Proposition 43. The induced functor Rel : Split†(CPM(Stabp)) → AffRelQFp
restricts to a

symmetric monoidal equivalence Caus(Split†(CPM(Stabp))) ≃ Total(AffRelQFp
) making the

following diagram commute:

Total(AffRelQFp
) AffRelQFp

Caus(Split†(CPM(Stabp))) Split†(CPM(Stabp)) Proj(Split†(CPM(Stabp)))

CPTP maps between
f.d. C∗-algebras

CP maps between
f.d. C∗-algebras Proj

(
CP maps between
f.d. C∗-algebras

)

≃ ≃

Proof. This follows from essentially the same argument as for proposition 28. ◀

Note that classically-controlled Pauli operators can be represented in Total(AffRelQFp
)

because they can be constructed with Clifford operators as well as Pauli state preparation
and measurements. For notational convenience, from here onwards, denote the category of
stabiliser quantum channels by StabChanp := Caus(Split†(CPM(Stabp))) whose states
are stabiliser density matrices.

Because all of the morphisms in Total(AffRelQFp
) are affine subspaces over Fp, this means

that exact equality of stabiliser quantum channels is computable in deterministic polynomial
time. This is a deterministic analogue of the celebrated Gottesman-Knill theorem [2].

4.3 The stabiliser theory with arbitrary classical control
By relaxing the requirement that the relations between classical objects are affine relations
we obtain the following category:

▶ Definition 44. Let RelQFp
denote the †-compact closed category given by the objects and

morphisms of AffRelQFp
in addition to the non-affine relation between classical types:{([

a

b

]
, a · b

)
∈ F2

p ⊕ Fp

}
: F2

p → Fp

Indeed, by adding the relation which multiplies classical dits, it follows immediately that:

▶ Lemma 45. The morphisms from Fn
p to Fm

p in RelQFp
are precisely set-relations between

from the set Fn
p to the set Fm

p , ie. subsets of Fn
p ⊕ Fm

p .

Therefore, the total relations between classical objects are precisely functions between
the underlying sets. These are exactly the classical corrections which can be performed
deterministically. However, by relaxing the affine constraints between classical objects, the
morphisms between quantum objects in RelQFp

also fail in general to be affine coisotropic
subspaces, or even just affine subspaces at all. In particular, this means that the symplectic
representation of stabiliser circuits fails:

▶ Theorem 46. There is no functor Total(RelQFp
) → StabChanp which extends Total(AffRelQFp

) ≃
StabChanp along Total(AffRelQFp

)↣ Total(RelQFp
).

This is because the non-affine classical control of stabiliser codes can produce mixed states
which are no longer proportional to uniform mixtures of pure states; non-affine corrections
between basis elements can create mixtures of pure states with different weights. In other
words, Total(RelQFp

) can not tell us the probability of measurement outcomes.
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Despite this fact, Total(RelQFp
) still keeps track of when measurement outcomes are

possible. For example, imagine we apply nonlinear corrections are applied to a stabiliser
code, producing a quantum state which is not a stabiliser code. In Total(RelQFp

) we still have
a notion of when errors are detectable; namely when one can perform Pauli measurements
such that the error changes the possible measurement outcomes.

Because only the possibility of errors being detected affects the code distance, Total(RelQFp
)

is a sound and complete semantics for the analysis of stabiliser quantum error correction
protocols. Conveniently, the extra probabilistic information encoded in StabChanp which
does not affect the code distance is forgotten in Total(RelQFp

). Moreover, because this extra
information is forgotten, Total(RelQFp

) retains the partial order enrichment, meaning that
we can quantify when processes are more pure, or equivalently, more constrained than each
other.

However, unlike in Total(AffRelQFp
), in Total(RelQFp

), computing relational composition
naïvely is exponential in the number of classical dits and quantum dits. This is to be
contrasted with the efficient classical probabilistic simulation of stabiliser quantum mechanics
given by the Gottesman-Knill theorem [2]. As a consequence, by taking the symplectic
representation of stabiliser quantum circuits seriously, despite their probabilistic simulation
being tractable, this suggests that the design of stabiliser quantum error correction protocols
remains hard.

5 Case study: a small imperative language for stabiliser QEC

In this section, we introduce a minimal imperative language SPL (Stabiliser Programming
Language) for stabiliser quantum channels. In other words, this is a language for quantum
error correction, including measurements and classical control. This language is strongly
inspired by the language QPL [39], but restricted to stabiliser operations and total, non-
deterministic, affine classical operations.

We give SPL small-step operational semantics on pairs [C|ρ] of terms acting on density
operators as CPTP maps (similar to that of Ying [44, Section 3.2]), and a fully abstract
denotational semantics in the SMC Total(AffRelQFp

). This case study serves as a proof-of-
concept to demonstrate that our symplectic semantics can be used as the foundation of a
quantum compilation stack whose target code is fault-tolerant by construction and with a
denotational semantics amenable to formal verification. The purpose of SPL is to show that
Total(AffRelQFp

) serves as a denotational semantics for stabiliser quantum programs, and is to
be contrasted with more powerful, and computationally expressive languages such as Quipper
[22] and Proto-Quipper [19] which are not specifically tailored to the stabiliser fragment.

5.1 Syntax
SPL has quantum and classical types Ty ::= pit | qpit. The terms are generated from the
following grammar with respect to some fixed, linearly ordered set Reg indexing registers:

c, d ::= c ; d | init x | y=A∗x | disc x | qinit x | x∗=U | meas x | ctrlP x y | skip.

for all n,m ∈ N, U ∈ Cℓn
p , P ∈ P⊗n

p , Fp-affine transformations A : Fn
p → Fm

p , and x, y ∈ Reg,
x ∈ Regn, y ∈ Regm.

The term c ; d represents the sequential composition of subterms; init x represents the
initialisation of x as the p-ary digit 0; y=A∗x applies the affine transformation A to x and
stores the result on y; disc x takes the trace of x; qinit x represents initialisation of x as
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Γ ⊢ c ▷ ∆ ∆ ⊢ d ▷ Σ
Γ ⊢ c ; d ▷ Σ Γ ⊢ init x ▷ x : pit,Γ Γ ⊢ qinit x ▷ x : qpit,Γ

x : pitn,Γ ⊢ y=A∗x ▷ x : pitn,y : pitm,Γ x : qpit,Γ ⊢ meas x ▷ x : pit,Γ

Γ ⊢ skip ▷ Γ x : qpit,Γ ⊢ disc x ▷ Γ x : qpitn,Γ ⊢ x∗=U ▷ x : qpitn,Γ

x : pit, y : qpit,Γ ⊢ ctrlP x y ▷ x : pit, y : qpit,Γ

Figure 1 Formation rules for SPL. n ∈ N>0 and τ ∈ Ty, x : τn is shorthand for {x1 : τ, · · · , xn : τ}
such that x = (x1, · · · , xn) ∈ Regn. New variables are always assumed to be fresh.

the qupit |0⟩; x∗=U applies the Clifford operator U on x; meas x represents the Pauli-X
measurement on x; ctrlP x y applies the Pauli operator P on y, classically controlled by x
in the Pauli-X basis; and skip represents the identity.

SPL is equipped with an environment-transforming type system, which enforces linear
usage of quantum data. Typed environments are partial functions Γ : Reg → Ty which bind
registers to be either qupits or pits, and which we sometimes represent as {x : τ, y : σ, z :
µ, · · · } for x, y, z · · · ∈ Reg and τ, σ, µ, · · · ∈ Ty. We impose that the domain dom(Γ) of Γ, i.e.
the set of bound registers {x, y, z, · · · }, is finite. Judgments are triples Γ ⊢ t ▷ ∆ consisting
of a term t and typed environments Γ,∆. A judgment Γ ⊢ t ▷ ∆ is well-formed if it is
derivable from the formation rules given in figure 1.

{in : qpit} ⊢
qinit x ; qinit out ; % initialize registers

x ∗= F ; (x, out) ∗= CX ; % prepare Bell pair

(in, x) ∗= CX ; in ∗= F−1 ; meas in ; meas x ; % Bell measurement

ctrlZ in out ; ctrlX x out ; % phase correction

qinit in ; qinit x ; disc in ; disc x % discard ancillae

▷ {out : qpit}

Figure 2 Qupit teleportation in SPL. Where F is the Fourier transform;CX is the (quantum)
controlled X gate; and Z and X are the Pauli Z and X gates. Input is given on register in : qpit
and output is returned on register out : qpit.

5.2 Operational semantics
In this subsection we define a structured operational semantics for SPL, which is strongly
inspired by Ying’s operational semantics for quantum programs [44, Section 3.2].

We interpret typed environments as objects in StabChanp:

▶ Definition 47. Given a typed environment Γ, let ⟨Γ⟩ be the dependent tensor product:

⟨Γ⟩ :=
⊗

x∈dom(Γ)

{
(Hp, 1Hp

) if Γ(x) = qpit; else (Hp, EX) if Γ(x) = pit

and D(Γ) := StabChanp(I, ⟨Γ⟩) be the set of density operators on ⟨Γ⟩.
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To give our operational semantics, we establish notation to represent stabiliser quantum
channels acting on subspaces of a larger ambient space. Take typed environments Γ,∆
and ordered subsets (lists) x ⊆ dom(Γ) and y ⊆ dom(∆), where moreover, dom(Γ) \ x =
dom(∆) \ y. Given a stabiliser quantum channel C : ⟨Γ|x⟩ → ⟨∆|y⟩ let Cx,y : ⟨Γ⟩ → ⟨Γ′⟩ be
the stabiliser quantum channel acting as C on the subspace ⟨∆⟩ ⊆ ⟨Γ⟩ and trivially on its
orthogonal complement ⟨Γ \ ∆⟩ ⊆ ⟨Γ⟩.

▶ Definition 48. A configuration is a pair consisting of a well-formed judgement Γ ⊢ t ▷ Σ
and a density operator ρ ∈ D(Γ), denoted [Γ ⊢ t ▷ Σ | ρ ∈ D(Γ)], or [t|ρ] for short.

The small-step operational semantics of SPL is defined by the following reduction
rules, where the typed environments are omitted for notational convenience:

[skip ; t|ρ]⇝ [t|ρ] [(initx) ; t|ρ]⇝ [t|ρ; ι(|0⟩)x,x] [(y=A∗x) ; t|ρ]⇝ [t|ρ; ι(MA)x,y]

[(discx) ; t|ρ]⇝[t|ρ; (TrHp
)x,x] [(qinitx) ; t|ρ]⇝[t|ρ; ι(|0⟩)x,x] [(x∗=U) ; t|ρ]⇝[t|ρ; ι(U)x,x]

[(measx) ; t|ρ]⇝ [t|ρ; (EX)x,x] [(ctrlP x y) ; t|ρ]⇝ [t|ρ;CP(x,y),(x,y)],
where

ι : Stabp → CPM(Stabp) takes pure stabilizer maps to stabiliser quantum channels;
EX : (Hp, 1Hp

) → (Hp, EX) denotes the Pauli-X measurement;
TrHp : (Hp, 1Hp) → I denotes the trace;
MA :=

∑
x∈Fm

p
|Ax⟩⟨x| : (Hp, Ex)⊗m → (Hp, Ex)⊗n;

CP : (Hp, EX) ⊗ (Hp, 1Hp
) → (Hp, EX) ⊗ (Hp, 1Hp

) is the classically controlled P ∈ Pp.

The types of density operators can be inferred from the typed environments. For example,
reduction rules for pit vs qupit initialisation produce different density operators:

[Γ ⊢ (initx) ; t ▷ x : pit,∆ | ρ ∈ D(Γ)]⇝[x : pit,Γ ⊢ t ▷ ∆ | ρ; ι(|0⟩)x,x ∈ D(x : pit,Γ)]
[Γ ⊢ (qinitx) ; t ▷ x : qpit,∆ | ρ ∈ D(Γ)]⇝[x : qpit,Γ ⊢ t ▷ ∆ | ρ; ι(|0⟩)x,x ∈ D(x : qpit,Γ)]

▶ Definition 49. Two quantum channels are observationally equivalent if they produce the
same measurement statistics according to the Born rule when acting on all density matrices.

▶ Theorem 50. The operational semantics⇝∗ for SPL is sound, complete, and universal
for the observational equivalence of stabiliser quantum channels.

Proof. It is straightforward to see that given any configuration [t|ρ], there is a unique ρ′

such that [t|ρ]⇝∗ [skip|ρ′]. Therefore, given any well-formed judgement t, there is a unique
stabiliser quantum channel [t|−]. The observational equivalence of well-formed judgements c
and d under⇝∗ therefore amounts to equality as stabiliser quantum channels, [c|−] = [d|−],
and thus, equality as quantum channels. ◀

5.3 Denotational semantics
We give SPL a denotational semantics in Total(AffRelQFp

). On types, let JpitK := Fp and
JqpitK := Q(F2

p, ω2). Define the denotation of a typed environment to be the dependent
direct sum JΓK :=

⊕
x∈dom(Γ) JΓ(x)K.

The denotation of well-formed judgments Γ ⊢ t ▷ ∆ is given by the maps AffRelQFp
(JΓK , J∆K)

defined inductively from the denotation of generating terms. As before, we need to establish
notation to represent affine relations acting on a subset of the registers of the context. Take
ordered subsets x ⊆ dom(Γ) and y ⊆ dom(∆), where moreover, dom(Γ) \ x = dom(∆) \ y.
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Given a relation S :
q
Γ|x

y
→

r
∆|y

z
let Sx,y : JΓK → JΓ′K denote the relation acting as S on

the subset J∆K ⊆ JΓK and trivially everywhere else JΓ \ ∆K ⊆ JΓK. The denotation of terms
is defined inductively:

Jc ; dK := JcK ; JdK JskipK := 1JΓK Jinit xK := ({(0, 0)} : F0
p → Fp})∅,x

q
y=A∗x

y
:= (Gr(A))x,y Jx∗=UK := (Rel(U))x,x Jdisc xK := {(x, 0) | x ∈ F2

p}x,∅

Jmeas xK := (Gr(π1))x,x Jqinit xK := ({(0, 0)} : F0
p → Fp}; ηX)∅,x

q
ctrlP x y

y
:=

{((
s,

[
t

u

])
,

(
s,

[
t+ s · a
u+ s · b

])) ∣∣∣∣ s, t, u ∈ Fp

}
x⊔y,x⊔y

where πk is the direct-sum projection onto the k-th component, and P = π(0, a, b) ∈ Pp. We
have omitted the typed contexts, which are given in figure 1.

▶ Theorem 51 (Full abstraction). Well-formed judgements c and d are observationally
equivalent if and only if JcK = JdK.

Proof. Since all generating judgements are stabiliser, it follows from a straightforward
induction that [c|−] lies in the embedding of StabChanp into the category of CPTP maps
between finite-dimensional C∗-algebras. By construction JcK = Rel[c|−], therefore the claim
follows from proposition 43. ◀

By enlarging the permissible classical operations of SPL with arbitrary functions rather
than affine transformations, the denotational semantics of SPL extends to Total(RelQFp

).
However, this is incompatible with the operational semantics in terms of stabiliser quantum
channels, because it only tells us the possibility, rather than the probability of measurement
outcomes.

6 Conclusion

We have developed a denotational semantics for stabiliser quantum programs which allows
for the manipulation of stabiliser codes, Pauli measurements, and classical affine control. We
demonstrated the power of this semantics by giving a fully abstract denotational semantics
to a toy imperative stabiliser language.

We extended this denotational semantics with arbitrary classical control, representing
the possible of measurement outcomes which can occur.

In the case of qubits, the affine, symplectic representation of stabiliser maps breaks down
so that Proj(Stab2) ̸≃ AffLagRelF2 [14]. By restricting the unitary operations to be generated
by the controlled-not gate, the Pauli group and the swap gate, we obtain the maximal
subcategory of qubit stabiliser maps on which the symplectic representation still holds [13, p.
156]. This is the natural setting for CSS codes [8, 40], which are widely used in QEC [1].

The language we have described in this paper is extremely primitive and low-level; despite
the abstract geometric structure of its denotational semantics. In future work, we intend to
develop a higher level programming language with primitives reflecting the elegant structure
of the semantics. For example, the ability to natively represent graph states and graph-like
operations, correctable and detectable errors, and the ability to make use of the enrichment
in partially ordered sets would be very useful.

It is also future work to explore denotational semantics for stabiliser quantum programs
using their graphical calculus. There is a complete ZX-calculus for affine Lagrangian relations
[6], which is equivalent to the qupit ZX-calculus [5, 33] modulo scalars. This is an interesting
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direction for future work because the ZX-calculus has already been successful for constructing
fault-tolerant quantum circuits [4], and the design and verification of QEC codes [10, 17].
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